Fiber-Optic Cable
In almost every way, fiber-optic cable is the ideal cable for data transmission. Not only does this type of cable accommodate extremely high bandwidths, but it also presents no problems with EMI and supports durable cables and cable runs as long as several kilometers. The two disadvantages of fiber-optic, however, are cost and installation difficulty.
The center conductor of a fiber-optic cable is a fiber that consists of highly refined glass or plastic designed to transmit light signals with little loss. A glass core supports a longer cabling distance, but a plastic core is typically easier to work with. The fiber is coated with a cladding that reflects signals back into the fiber to reduce signal loss. A plastic sheath protects the fiber. See Figure 3.17.
A fiber-optic network cable consists of two strands separately enclosed in plastic sheaths—one strand sends and the other receives. Two types of cable configurations are available: loose and tight configurations. Loose configurations incorporate a space between the fiber sheath and the outer plastic encasement; this space is filled with a gel or other material. Tight configurations contain strength wires between the conductor and the outer plastic encasement. In both cases, the plastic encasement must supply the strength of the cable, while the gel layer or strength wires protect the delicate fiber from mechanical damage.
Optical fiber cables don’t transmit electrical signals. Instead, the data signals must be converted into light signals. Light sources include lasers and light-emitting diodes (LEDs). LEDs are inexpensive but produce a fairly poor quality of light suitable for less-stringent applications.
![[note.gif]](note.html)
A laser is a light source that produces an especially pure light that is monochromatic (one color) and coherent (all waves are parallel). The most commonly used source of laser light in LAN devices is called an injection laser diode (ILD). The purity of laser light makes lasers ideally suited to data transmissions because they can work with long distances and high bandwidths. Lasers, however, are expensive light sources used only when their special characteristics are required.
The end of the cable that receives the light signal must convert the signal back to an electrical form. Several types of solid-state components can perform this service.
One of the significant difficulties of installing fiber-optic cable arises when two cables must be joined. The small cores of the two cables (some are as small as 8.3 microns) must be lined up with extreme precision to prevent excessive signal loss.
Further Information